Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(11): 108354, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026214

RESUMO

Classic ANOVA (cA) tests the explanatory power of a partitioning on a set of objects. More fit for clusters proximity analysis, nonparametric ANOVA (npA) extends to a case where instead of the object values themselves, their mutual distances are available. However, extending the cA applicability, the metric conditions in npA are limiting. Based on the central limit theorem (CLT), here we introduce nonmetric ANOVA (nmA) that by relaxing the metric properties between objects, allows an ANOVA-like statistical testing of a network clusters disparity. We present a parametric test statistic which under the null hypothesis of no differences between the competing clusters means, follows an exact F-distribution. We apply our method on three diverse biological examples, discuss its parallel performance, and note the specific use of each method tailored by the inherent data properties. The R code is provided at github.com/AmiryousefiLab/nmANOVA.

2.
Bioorg Med Chem Lett ; 94: 129450, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591318

RESUMO

Methionine adenosyltransferase 2A (MAT2A) has been indicated as a drug target for oncology indications. Clinical trials with MAT2A inhibitors are currently on-going. Here, a structure-based virtual screening campaign was performed on the commercially available chemical space which yielded two novel MAT2A-inhibitor chemical series. The binding modes of the compounds were confirmed with X-ray crystallography. Both series have acceptable physicochemical properties and show nanomolar activity in the biochemical MAT2A inhibition assay and single-digit micromolar activity in the proliferation assay (MTAP -/- cell line). The identified compounds and the relating structural data could be helpful in related drug discovery projects.


Assuntos
Bioensaio , Metionina Adenosiltransferase , Linhagem Celular , Cristalografia por Raios X , Metionina Adenosiltransferase/antagonistas & inibidores , Terapia de Alvo Molecular
3.
Genomics Proteomics Bioinformatics ; 20(3): 587-596, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35085776

RESUMO

Combinatorial therapies have been recently proposed to improve the efficacy of anticancer treatment. The SynergyFinder R package is a software used to analyze pre-clinical drug combination datasets. Here, we report the major updates to the SynergyFinder R package for improved interpretation and annotation of drug combination screening results. Unlike the existing implementations, the updated SynergyFinder R package includes five main innovations. 1) We extend the mathematical models to higher-order drug combination data analysis and implement dimension reduction techniques for visualizing the synergy landscape. 2) We provide a statistical analysis of drug combination synergy and sensitivity with confidence intervals and P values. 3) We incorporate a synergy barometer to harmonize multiple synergy scoring methods to provide a consensus metric for synergy. 4) We evaluate drug combination synergy and sensitivity to provide an unbiased interpretation of the clinical potential. 5) We enable fast annotation of drugs and cell lines, including their chemical and target information. These annotations will improve the interpretation of the mechanisms of action of drug combinations. To facilitate the use of the R package within the drug discovery community, we also provide a web server at www.synergyfinderplus.org as a user-friendly interface to enable a more flexible and versatile analysis of drug combination data.


Assuntos
Modelos Teóricos , Software , Sinergismo Farmacológico , Combinação de Medicamentos , Linhagem Celular
4.
Blood Adv ; 5(20): 4125-4139, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34478517

RESUMO

Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer, with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has led to the rapid establishment of clinical trials evaluating the impact of various MCL-1 inhibitors. However, our understanding about the clinical impact and optimal use of MCL-1 inhibitors is still limited. We therefore explored mechanisms of acquired MCL-1 inhibitor resistance and optimization strategies in myeloma. Our findings indicated heterogeneous paths to resistance involving baseline Bcl-2 family alterations of proapoptotic (BAK, BAX, and BIM) and antiapoptotic (Bcl-2 and MCL-1) proteins. These manifestations depend on the BH3 profile of parental cells that guide the enhanced formation of Bcl-2:BIM and/or the dynamic (ie, treatment-induced) formation of Bcl-xL:BIM and Bcl-xL:BAK complexes. Accordingly, an unbiased high-throughput drug-screening approach (n = 528) indicated alternative BH3 mimetics as top combination partners for MCL-1 inhibitors in sensitive and resistant cells (Bcl-xL>Bcl-2 inhibition), whereas established drug classes were mainly antagonistic (eg, antimitotic agents). We also revealed reduced activity of MCL-1 inhibitors in the presence of stromal support as a drug-class effect that was overcome by concurrent Bcl-xL or Bcl-2 inhibition. Finally, we demonstrated heterogeneous Bcl-2 family deregulation and MCL-1 inhibitor cross-resistance in carfilzomib-resistant cells, a phenomenon linked to the MDR1-driven drug efflux of MCL-1 inhibitors. The implications of our findings for clinical practice emphasize the need for patient-adapted treatment protocols, with the tracking of tumor- and/or clone-specific adaptations in response to MCL-1 inhibition.


Assuntos
Mieloma Múltiplo , Preparações Farmacêuticas , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína bcl-X
5.
Mol Cell Proteomics ; 19(6): 1047-1057, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32205417

RESUMO

Quantitative proteomics by mass spectrometry is widely used in biomarker research and basic biology research for investigation of phenotype level cellular events. Despite the wide application, the methodology for statistical analysis of differentially expressed proteins has not been unified. Various methods such as t test, linear model and mixed effect models are used to define changes in proteomics experiments. However, none of these methods consider the specific structure of MS-data. Choices between methods, often originally developed for other types of data, are based on compromises between features such as statistical power, general applicability and user friendliness. Furthermore, whether to include proteins identified with one peptide in statistical analysis of differential protein expression varies between studies. Here we present DEqMS, a robust statistical method developed specifically for differential protein expression analysis in mass spectrometry data. In all data sets investigated there is a clear dependence of variance on the number of PSMs or peptides used for protein quantification. DEqMS takes this feature into account when assessing differential protein expression. This allows for a more accurate data-dependent estimation of protein variance and inclusion of single peptide identifications without increasing false discoveries. The method was tested in several data sets including E. coli proteome spike-in data, using both label-free and TMT-labeled quantification. Compared with previous statistical methods used in quantitative proteomics, DEqMS showed consistently better accuracy in detecting altered protein levels compared with other statistical methods in both label-free and labeled quantitative proteomics data. DEqMS is available as an R package in Bioconductor.


Assuntos
Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Biomarcadores/metabolismo , Linhagem Celular , Cromatografia Líquida , Receptores ErbB/antagonistas & inibidores , Escherichia coli/metabolismo , Gefitinibe/farmacologia , Humanos , Focalização Isoelétrica , Células MCF-7 , Proteoma/metabolismo , Reprodutibilidade dos Testes
7.
Haematologica ; 105(6): 1527-1538, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31439679

RESUMO

Innate drug sensitivity in healthy cells aids identification of lineage specific anti-cancer therapies and reveals off-target effects. To characterize the diversity in drug responses in the major hematopoietic cell types, we simultaneously assessed their sensitivity to 71 small molecules utilizing a multi-parametric flow cytometry assay and mapped their proteomic and basal signaling profiles. Unsupervised hierarchical clustering identified distinct drug responses in healthy cell subsets based on their cellular lineage. Compared to other cell types, CD19+/B and CD56+/NK cells were more sensitive to dexamethasone, venetoclax and midostaurin, while monocytes were more sensitive to trametinib. Venetoclax exhibited dose-dependent cell selectivity that inversely correlated to STAT3 phosphorylation. Lineage specific effect of midostaurin was similarly detected in CD19+/B cells from healthy, acute myeloid leukemia and chronic lymphocytic leukemia samples. Comparison of drug responses in healthy and neoplastic cells showed that healthy cell responses are predictive of the corresponding malignant cell response. Taken together, understanding drug sensitivity in the healthy cell-of-origin provides opportunities to obtain a new level of therapy precision and avoid off-target toxicity.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Preparações Farmacêuticas , Citometria de Fluxo , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteômica
8.
EBioMedicine ; 50: 67-80, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31732481

RESUMO

BACKGROUND: Probing genetic dependencies of cancer cells can improve our understanding of tumour development and progression, as well as identify potential drug targets. CRISPR-Cas9-based and shRNA-based genetic screening are commonly utilized to identify essential genes that affect cancer growth. However, systematic methods leveraging these genetic screening techniques to derive consensus cancer dependency maps for individual cancer cell lines are lacking. FINDING: In this work, we first explored the CRISPR-Cas9 and shRNA gene essentiality profiles in 42 cancer cell lines representing 10 cancer types. We observed limited consistency between the essentiality profiles of these two screens at the genome scale. To improve consensus on the cancer dependence map, we developed a computational model called combined essentiality score (CES) to integrate the genetic essentiality profiles from CRISPR-Cas9 and shRNA screens, while accounting for the molecular features of the genes. We found that the CES method outperformed the existing gene essentiality scoring approaches in terms of ability to detect cancer essential genes. We further demonstrated the power of the CES method in adjusting for screen-specific biases and predicting genetic dependencies in individual cancer cell lines. INTERPRETATION: Systematic comparison of the CRISPR-Cas9 and shRNA gene essentiality profiles showed the limitation of relying on a single technique to identify cancer essential genes. The CES method provides an integrated framework to leverage both genetic screening techniques as well as molecular feature data to determine gene essentiality more accurately for cancer cells.

9.
PLoS Comput Biol ; 15(5): e1006752, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107860

RESUMO

High-throughput drug screening has facilitated the discovery of drug combinations in cancer. Many existing studies adopted a full matrix design, aiming for the characterization of drug pair effects for cancer cells. However, the full matrix design may be suboptimal as it requires a drug pair to be combined at multiple concentrations in a full factorial manner. Furthermore, many of the computational tools assess only the synergy but not the sensitivity of drug combinations, which might lead to false positive discoveries. We proposed a novel cross design to enable a more cost-effective and simultaneous testing of drug combination sensitivity and synergy. We developed a drug combination sensitivity score (CSS) to determine the sensitivity of a drug pair, and showed that the CSS is highly reproducible between the replicates and thus supported its usage as a robust metric. We further showed that CSS can be predicted using machine learning approaches which determined the top pharmaco-features to cluster cancer cell lines based on their drug combination sensitivity profiles. To assess the degree of drug interactions using the cross design, we developed an S synergy score based on the difference between the drug combination and the single drug dose-response curves. We showed that the S score is able to detect true synergistic and antagonistic drug combinations at an accuracy level comparable to that using the full matrix design. Taken together, we showed that the cross design coupled with the CSS sensitivity and S synergy scoring methods may provide a robust and accurate characterization of both drug combination sensitivity and synergy levels, with minimal experimental materials required. Our experimental-computational approach could be utilized as an efficient pipeline for improving the discovery rate in high-throughput drug combination screening, particularly for primary patient samples which are difficult to obtain.


Assuntos
Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Aprendizado de Máquina
10.
Nucleic Acids Res ; 47(W1): W43-W51, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31066443

RESUMO

Drug combination therapy has the potential to enhance efficacy, reduce dose-dependent toxicity and prevent the emergence of drug resistance. However, discovery of synergistic and effective drug combinations has been a laborious and often serendipitous process. In recent years, identification of combination therapies has been accelerated due to the advances in high-throughput drug screening, but informatics approaches for systems-level data management and analysis are needed. To contribute toward this goal, we created an open-access data portal called DrugComb (https://drugcomb.fimm.fi) where the results of drug combination screening studies are accumulated, standardized and harmonized. Through the data portal, we provided a web server to analyze and visualize users' own drug combination screening data. The users can also effectively participate a crowdsourcing data curation effect by depositing their data at DrugComb. To initiate the data repository, we collected 437 932 drug combinations tested on a variety of cancer cell lines. We showed that linear regression approaches, when considering chemical fingerprints as predictors, have the potential to achieve high accuracy of predicting the sensitivity of drug combinations. All the data and informatics tools are freely available in DrugComb to enable a more efficient utilization of data resources for future drug combination discovery.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Neoplasias/tratamento farmacológico , Biologia Computacional , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos
11.
Database (Oxford) ; 2018: 1-13, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219839

RESUMO

Drug Target Commons (DTC) is a web platform (database with user interface) for community-driven bioactivity data integration and standardization for comprehensive mapping, reuse and analysis of compound-target interaction profiles. End users can search, upload, edit, annotate and export expert-curated bioactivity data for further analysis, using an application programmable interface, database dump or tab-delimited text download options. To guide chemical biology and drug-repurposing applications, DTC version 2.0 includes updated clinical development information for the compounds and target gene-disease associations, as well as cancer-type indications for mutant protein targets, which are critical for precision oncology developments.


Assuntos
Interações Medicamentosas , Software , Algoritmos , Bioensaio , Mineração de Dados , Bases de Dados de Proteínas , Internet , Mutação/genética , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...